
 1 

The honor of your presence is requested at the marriage of Waterfall and Agile. 
 
 
I love project management; the order, planning, controls, and a very logical 
beginning and end. In fact its very definition is inspirational to me, “a temporary 
endeavor undertaken to create a unique product, service or result” 1. I also love and 
appreciate the excitement in building something new, the chaos that inevitably 
occurs, the solution‐ing and brainstorming that happens in the process – it is 
exhilarating. I would assume these processes happen in all types of project 
management: construction, engineering, event planning, or my personal favorite – 
software development. 

I’ve worked in software development since 2000 and with different groups and 
specialties; web‐based applications using java, C++, C@, Visual Basic, you name it. I 
am technical enough to be dangerous but couldn’t program a single line of code. 
I’ve learned enough to talk‐the‐talk and be an informed and effective project 
manager. As I’ve worked with and managed different software development groups, 
I have also been exposed to two different, but effective methodologies: Waterfall 
and Agile. 

When I started working in software development the only methodology used at the 
time was Waterfall. It was fairly basic, ha a comfortable linear feel, middle‐ 
milestone based reviews & gateways, and the model was effective in producing 
desired outcomes. With my team, we successfully delivered many software releases 
using that model. The documented pros & cons of Waterfall are true with the 
largest risk being not able to course correct quickly and revise the ‘desired 
outcome’. Waterfall stays true to the requirements and scope, even with a proper 
change management process, you can easily miss the outcome you really need in 
favor of what was originally documented. 

At the time, a few other models were making their way into the PM realm: Rapid 
Application Development (RAD) and Spiral2 – it was a way to incorporate rapid 
iterations on prototypes with Waterfall. It never gained the popularity that the Agile 
model did when it hit the scene in 2001. Agile is about being able to get feedback 
and respond to change (aka failing fast). It’s about building products our customers 
want and are willing to pay for. I did not adopt Agile as a project manager. I took a 
few courses, earned some PDU’s, and dabbled – but never, ever considered a full 
scale revolutionary change into my PM world. Until years later – fast forward to 
2013 – I took a new role at a company that had already adopted the Agile 
methodology to build an enterprise software platform. The time had come for a 
personal revolution. 

Waterfall and Agile 
By: Brandi Narvaez 

 

 

 



 2 

How does a strict Waterfall PM adopt Agile? 

Not slowly, that is for sure. I found it to be more of a religion‐based conversation; so 
basic as to if you believe in God or not. The Agile believers tend to be zealots and 
have a religious and spiritual connection to their god. I had to be willing to adopt 
the lingo, the process, and work within the Agile model that the team itself had fully 
embraced – essentially worship their god. As I tried that path, I found I wasn’t 
getting what I needed out of the sprinting process and the desired outcomes were 
not what we needed as a team, a product, or a company. I was distraught that 
perhaps Agile methodologies were not appropriate for building and implementing 
an enterprise software solution. Maybe we were worshiping to the wrong god? 

We were closing the projects, keeping to a true PM definition of project, but the 
desired outcomes were woefully lacking. We would begin a sprint and plan to build 
a feature without a full understanding of the requirements, no market analysis, and 
certainly no well thought out designs. Most of the popular Agile approaches do come 
with a set of prescribed roles, artifacts (aka software requirements), and 
ceremonies that you are supposed to follow for success. The Agile model involves 
failing fast, but not failing every time. 

We were ‘winging it’ – to use a fun expression. Unfortunately the winging kept us in 
a losing game. We also had no warning mechanism; often we would get to a defined 
release date only to be told “the product isn’t ready” – how did we only know that 
when we got to the release date? We should have known so much sooner than that 
and began making tradeoff decisions proactively. There are only three components 
of a project that can be compromised on: Scope, Resources, and Schedule – we were 

 



 3 

always choosing “Schedule” because there was no other choice once we were at the 
point of late! Agile alone had failed us. While reacting to change is important, in our 
organization, it came at the cost of any level of predictability. 

The problems seemed to boil down to the following: 

1. 
2. 
3. 
4. 
5. 

How do I ensure we achieve desired outcomes for the product? 
How do we make better decisions: Scope, Resources, Schedule? 
How do we deliver on time? 
How do we better manage & mitigate risks? 
If we are Agile zealots why weren’t we doing design/analysis before 
constructing? 
We didn’t have a strong and skilled product owner guiding our sprints with 
the voice of the customer. 
Is the idea of planning an enterprise software release actually Agile? 
How do I embrace the Agile model and not offend those worshiping to the 
Agile gods? 

6. 

7. 
8. 

I attempted to solution this problem by interjecting some Waterfall. It is what I fall 
back to when I feel the Agile model sprinting out of control (pun intended). As a 
team, we agreed to do the following: 

1. Define a product council – which serves as one of the feature or idea 
generation factories and the change management committee to approve or 
deny changes/requests as they enter and attempt to derail the sprints. 
Implement a policy that nothing can be assigned to a sprint unless it has been 
through a preliminary process of analysis & design with our product owner 
and lead architect. 
Define milestones and sequence them in a way that provides reviews, 
gateways, and a way to tell if we are sprinting off the track. 
Introduce a de‐risking process – which is part of the Agile religion – but one 
we hadn’t fully worshiped as a team. Enabling us to make better decisions 
when it comes to Scope, Resources, and Schedules & achieve desired 
outcomes. 
Core to our business strategy, we also introduced the concept of market 
validation before a feature is put into scope of a software release. This 
wasn’t a change to our SDLC per say, but it made a huge difference in what 
the developers work on and therefore aids in ensuring desired outcomes. 

2. 

3. 

4. 

5. 

Introducing Waterfall based milestones, de‐risking, and adding councils and policies 
became a saving grace. To be fair, the Agile model doesn’t shun these concepts, but 
doesn’t regiment them either. Agile is more neutral or organic when it comes to 
these types of things ‘working themselves out in the process.’ We clearly couldn’t 
depend any longer on things working themselves out. There are clear milestones to 
work towards now: those milestones are considered and incorporated in sprint 
planning, and are easy to identify if we have an impact to the overall project (aka 

 



 4 

software release) due date. As a side effect, communications have dramatically 
improved internally and externally to our customers. One validation point – when 
we made the right choices applying some Waterfall methods to our Agile religion, 
we made our first ever on‐time release date! 

Interjecting Waterfall was one factor in our improvements and our ability to achieve 
release dates and desired outcomes. Secondarily, we also became stronger Agile 
zealots by adding a strong Product Owner to the team, (i.e. defined the right roles 
needed to be successful in Agile). We adopted the practice of analysis and design in 
advance of putting scope into a sprint. We meet regularly to review milestones and 
hold each other accountable when things are slipping, and we are able to respond to 
risk we see approaching and mitigate or accept impact ‐ but this time by choice and 
not by default. We continue to ‘fail faster’ but with movement towards appropriate 
outcomes for our team, our products, and ultimately our customer. 

We continue to grow and learn together as we work out our new Agile‐fall model. 
I recently heard the term: “Agile‐fall” and it immediately resonated with me – this is 
what we are doing: blending the two methodologies. We develop and test software 
via Agile, but release via Waterfall. In this way the developers get to bow to their 
Agile god, yet I can manage to a project (aka the software release) in a traditional 
model that the business & our customers understand: Waterfall. One of the things I 
like about the philosophy of Agile is its willingness to morph into whatever works 
best for the teams involved. It morphed to not only become predictable but to 
welcome the regiments we placed on it through our Waterfall experiences (much 
like the compromises married couples make). I had to be willing to adapt to the 
Agile methods and the teams had to be willing to accept some of the Waterfall 
process – in the end cohabitating these two methodologies has made all the 
difference for us and our success. 

May I introduce to you the new Mr. & Mrs. Agile‐Fall – may they live happily ever 
after. 

References: 
1 - A Guide to the Project Management Body of Knowledge (PMBOK Guide), Third Edition, 
Project Management Institute. 

2 – Software Development Models: http://en.wikipedia.org/wiki/Software_development_process 

3- Agile Software Development Model: http://en.wikipedia.org/wiki/Agile_software_development 

 

http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Agile_software_development

